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A new equation of the cryoscopic curve has been derived. This equation relates the 
equilibrium temperature of the solution, T, to sample mole fraction, F, melted at T: 

T = 7"Omi-- F/x, + 2a(1 -- F)  

This equation takes into account the effect of departure of solutions from ideality 
and solubility of their components in the solid phase. 

The data obtained indicate that an accuracy to within 10 ~ of the actual impurity 
values can be anticipated in the 98 to 99.9 ~ purity range. 

The equation of the cryoscopic curve which relates the equilibrium temperature 
of  the solution to sample mole fraction melted at this temperature, has the fol- 
lowing form [1] 

7" = T ~ R ( r ~  1 
m l  - -  AHOm i "xj ~ ~ ( 1 )  

0 0 where T~, AH~., R and xj are constants. 
i t 

A plot of T vs. liE should be a straight line of slope - R(T~)~ 2 xi/AH~ io and 
intercept T O 

m i �9 

Knowledge of the molar enthalpy of  melting of the solvent permits, for instance, 
calculation of the solute content in the solution. Many other properties of  the 
solution can be calculated, too. 

Equation (1) is an approximation and can be expected to hold for solutions that 
are closely related to ideal and whose components are totally insoluble in the solid 
phase (simple eutectic systems). Such systems are not met in practice [2]. For  
this reason, experimental data (T vs. l/F) obtained by means of both static [3] 
and dynamic methods almost always form a curve and can hardly be considered 
to be even in qualitative agreement with Eq. (1). 

Much research has been done in order to elucidate the reasons why the investi- 
gated sample does not "obey"  Eq. (1) perfectly. 

Considering variants of  phase diagrams (Fig. 1), one may conclude that a posi- 
tive departure from ideality (a general case in organic systems) changes the phase 
diagram from a continuous series of  liquid and solid solutions to the eutectic 
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type, whereas solubility of  the components in the solid phase increases in the 
reverse order [2]. 

Mastrangelo [4] and Smit [5] developed equations which assume equilibrium 
conditions of  freezing (rarely realized in practice) [6] and ideal liquid and solid 
solubility of the components: 

T =  T O - - -  m i 
R(T~ 1 

�9 - - (2) 
i xj + F 

(1 - k) 

It appears that the Mastrangelo and Smit approaches are limited to systems which 
exhibit complete solubility of  the components in both the liquid and solid states 
(Fig. la). In practice such solutions are only rarely met with. 

Smit [7] and Lashkevich [8] developed another equation which assumes com- 
plete mixing conditions in the liqtfid [6], complete fractionation conditions in the 
solid [9], and no departure from ideality in either the liquid or solid 

T = T~ - A(T~ (1 - k) 
A H O m  ' . x i �9 F(l_k)  (3) 
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Fig .  1. Effect of  increasingly positive departure from ideality in changing the phase diagram 
from a continuous series of  solid solutions t o  a eutectic type 
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This approach is also limited to systems which exhibit complete solubility in the 
liquid and solid. 

Badley discusses a treatment of cryoscopic data when the liquid phase is non- 
ideal [10]. Departure from ideality in the liquid phase has less influence on the 
cryoscopic data than that in the solid phase. 

The purpose of the present work is to derive a new equation for a binary system, 
which would take into account the effect of departure of liquid and especially 
solid solutions from ideality, solubility of their components in the solid phase, 
and segregation in the solid. This equation should be applicable to systems which 
exhibit both complete and limited solubility of the components in the solid phase. 
These systems are generally met in practice. 

Methods of calculation 

It is assumed that 
1. the liquid and especially solid solutions are diluted real solutions and the 

activity coefficients of components are given by expressions of the regular type 
(reference state - infinitely diluted liquid or solid solution) [11]; 

2. the solubility of one component in another may be so low that it is difficult 
to detect experimentally, but there will always be a measure of solubility in the 
solid phase; 

3. freezing is slow enough for mixing to erase all concentration gradients in the 
liquid icomplete mixing conditions of freezing), but fast enough so that diffusion 
rates in the solid are negligible. The non-uniform solid phase has a zoned or 
otherwise cored structure. Crystal layers that have formed one upon another 
insulate the main crystal mass from the liquid. Thus, the liquid - insulating 
crystal layer system may be considered to be in equilibrium and the notion of 
equilibrium is still applicable. The remaining part of the crystal mass is treated 
as failing to participate in the crystallization process (complete fractionation 
conditions of freezing). 

Consider a solid phase in equilibrium with its melt. By the condition of equi- 
librium for the solvent we obtain 

/~t.L _ ~t.S 
L - l n a  s -  lnaj  (4) 

R T  

Further, considering the temperature-dependence of Eq. (4) we obtain 

AH~ 
R T  z d T =  d l n a i  L -  d l n a  s (5) 

According to the first assumption the activities in Eq. (5) are given by expres- 
sions of the regular type 

In a L = A ( x ~ )  z + l n x  L (6) 

s = B(xS)2 + in x s (7) In a i 
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By introducing into (6) and (7) t he following approximation: In x i = In (1 - x~) 
~- - x i, which may be expected to hold for diluted solutions, we obtain 

i n  = A(x ) 2 - (8) 

In a s = B(xS) 2 - x s (9) 

L and in a s may be replaced by the right-hand sides of Eqs (8) and (9) In (5), In a i 
Thus, we obtain 

AH~ 2 A x ~  dx~ dx~ 2 B x  s dx  s + d x  s (10) |dT . . . . .  

Unlike ideal solutions, in diluted real solutions the solute content in the solid is 
not a linear function of the solute content in the liquid. In order to relate the 
solute content in the solid to its content in the liquid, it is assumed (assumption 2) 
that 

= (1 l) 

The parameter a of this important equation depends on both the solubility in the 
solid and departure from ideality of the investigated solution. Eq. (l l) cannot 
be ruled out by a thorough thermodynamic analysis. 

Substituting Eq. (11) into (10) and neglecting all terms except for the zero and 
first-order terms, we obtain 

A H ~  
R T  z dT = 2(A + a)x~ �9 dx~ - dx~ (12) 

Integrating Eq. (12) with respect to temperature over the range T ~  to T, and with 
respect to composition over the range 0 to x~, and putting T ~  T ~ ( T ~  we 
obtain 

A H ~ 
R(TO f (T~  - T) = x~ -- (A + a) (x~) z (13) 

Eq. (13) relates the composition of a diluted real solution to its equilibrium 
temperature. 

The above description assumes (assumption 3) that complete mixing conditions 
in the liquid and complete fractionation conditions in the solid are maintained 
at all stages of the crystallization process. Therefore, the composition of the last 
solid to separate is not equal to the average composition of the solid but is equal 
to the composition that corresponds to the equilibrium with the liquid [12, 13]: 

dp (14) 
xS -- dz 

Of course, the composition of the liquid at all stages of the crystallization process 
is equal to the average composition of the liquid: 

= P- (15) 
Z 
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According to Eq. (11) the ratio s L xjTxj is a linear function of x]" in the region where 
the solution is diluted. Thus, Eq. (14) may be rewritten in the following form: 

dp xS P -  a x e .  p (16) 
X S = d ~ - =  x~" z - z 

Separating variables and putting p = zx  L we obtain 

dz dx L 
z - xL(axJ ( -  l) (17) 

Eq. (17) may be integrated with respect to the mass of the liquid over the range 
z0 to z and with respect to composition over the range xj to x~. After rearrangement 
we obtain 

(ax~ - 1) x i 
Z/Zo = _ 7 1 )  (18) 

Because the left-hand side of Eq. (18) is equal to F, it may be rewritten in the fol- 
lowing form 

1 

x~ = F/xj + a(1 - F) (19) 

When F ~ 0, then x~ ~ x s (see Eq. 11). This is in agreement with the well- 
known facts that 

- if a system which forms a continuous series of liquid and solid solutions 
is cooled under conditions of complete fractionation, it will always reach 
the lowest point of the liquidus curve:, i.e. the last remaining part of the 
melt is the pure component; 

- under equilibrium conditions of cooling, systems with compositions between 
(e) and (Ti) (Fig. lc) do not undergo the eutectic reaction since the liquid 
never reaches the eutectic composition. In the case of complete mixing 
conditions of the liquid and complete fractionation of the solid, the liquid 
will often reach the eutectic point although the composition of the solution 
is to the left of point (c). The quantity of liquid at the eutectic point is 
generally small. 

Substituting (19) into (13), rearranging and putting (xj) ~ = 0 since the solute 
content in the solutions investigated by means of cryoscopy is always less than 1 
mole ~ ,  we obtain 

0 2 0 
R(Tm~) / A H; i  (20) 

T =  T ~ , - F / x j  + 2a(1 - F) 

Eq. (20) relates the equilibrium temperature of the solution to sample mole 
fraction melted at this temperature. 

Eqs (20) and (1) become identical when a = 0, i.e. when the solution is ideal 
and there is no solubility in the solid. 

The influence of the parameter a on Eq. (20) is quite different from the influence 
of the parameter k on Eq. (2) given by Mastrangelo. Inasmuch as in Mastrangelo's 
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equation its influence is expressed by a term k/1 - k independent of other factors, 
then in Eq. (20) its influence is more complicated and depends on the composition 
of the solution. If  x i decreases, the weight of the 2a(l - F) term in the denomina- 
tor of Eq. (20) becomes less and Eq. (20) approaches Eq. (1). For this reason, 
cryoscopic curves of very diluted solutions are linear if plotted as T vs. l/F. 

Let us analyse the above statement in more detail by means of Eqs (13), (11) 
and (10). An important feature of Eq. (13) is that Tvs. x~ is concave (if A is posi- 
tive) and has a finite slope as x L approaches zero 

dT R(T~ f and d2T - - >  0 as x~ ~ 0  (21) 
dx~ AH~ d(x~) 2 

The concavity of the T vs. x~ line is characteristic only in a limited range of 
x~ and results from approximations that have been made while obtaining Eq. (13). 
If  this is not the case, Eq. (10) rather than Eq. (13) should be used for a similar 
analysis. A second differentiation of Eq. (10) with respect to x~ gives 

dZT RT 3 
- - -  [2(A + a) - 12Ba3(@) z] (22) 

d(x~) ~ AI-l~ 

Thus, if x} increases, the 12BaZ(x~) 3 term will increase and the initially concave 
T vs. x} line becomes convex, as frequently observed in practice [14 - 16]. 

Substituting Eq. (11) into (13), we obtain 

R T  o 2 1/~ (m~) (~s,l/3 1) R ( r ~  r = T ~ - a -  ,~7g-,0 ,~J) + (A/a + - x  s (23) 
A Hmi A Hml 

An important feature of Eq. (23) is that T vs. x s is concave and has an infinite 
slope as x s approaches zero 

dT d2T 
dx~-~ oo and d(xS)~> 0 as x s ~ 0  (24) 

Analysis of the first and second derivatives shows that the solidus curve is very 
close to the ordinate of the phase diagram and that the solubility of one component 
in another may be so low that it is difficult to detect experimentally, but there will 
always be a measure of solubility. Consequently, a system which exhibits limited 
solubility in the solid phase behaves as a simple eutectic system when very di- 
luted. 

Eq. (20) may be rearranged to yield [17] 

T O aH~ AH~ 
( m i  - -  T )  - 1  = (1/xi -- 2a) R(T 0 ~ m i  ) " F + 2a R(TO)3 (25) 

There are two unknown quantities in Eq. (25): x i and T~ " T~ may be evaluat- 
ed by the trial-and-error procedure until the assumed straight line of the plot 
To _ 2a)AHmjR(T ~ )3 ( mt -- T)- 1 vs. Fis achieved. The slope of this line will be (1/x i o o 

and the intercept 2aAH~ 2. Thus, if AH~ is known we are able to cal- 
culate xj. 
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Experimental and results 

The following systems have been investigated: benzene, benzene + 0.34mole 
thiophene, and benzene + 0.77 mole % n-heptane. In these systems the departure 
from ideality increases from the benzene - thiophene to the benzene - n-heptane 
system, whereas solubility of the components in the solid phase increases in the 
reverse order. 

The apparatus, for melting curve measurements and the procedure for evaluat- 
ing F have been described by Kawalec and Malanowski [18]. 

The results on purity determination are presented graphically in Fig. 2 in the 
form of T vs. 1/F. It is seen that these data can hardly be considered to be even in 
oualitative agreement with Eq. (1) 

Afterwards these data were recalculated according to Eq. (25). T~ was found 
equal to 279.16 K. The results are presented graphically in Fig. 3, in the form of  

i 
x: 279 .00 - -  

E 278.0( -- ~"t~,~ ~ 

277. 00 -- 
I I [ I p.. 
2 3 4 5 

~/F 

Fig. 2. Cryoscopic curves of benzene ( e ) ,  benzene + 0.34 mole ~ thJophene ( x ), and benzene 
4- 0.77 mole % n-heptane (o)  

s.5oj- 5 "  

oE 

150 - -  ~ , " "  x~,,x o 

0.50 

[ [ I I I I ~ , _  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 10 

Fig. 3. Cryoscopic curves of benzene (o) ,  benzene q- 0.34 mole % thiophene ( x ) ,  and ben- 
zene + 0077 mole % n-heptane (o)  
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(T~ - T) -1  vs. F. These data form approximately a straight line and are in good 
agrement with Eq. (25), which means that the assumptions made are reliable 
if the experiment is valid. 

Estimates of  the accuracy of the purity evaluations are presented in Table 1. 
The data f rom Table 1 indicate that an accuracy to within 10 ~ of the actual 
impurity can be anticipated in the 98 to 99.9 Yo purity range. 

Table 1 

Summary of the benzene purity results. Major componet--benzene 
Impurity--thiophene and n-heptane 

Physical property 

Solution 
T 

Impurity 
added, 
m o l e ~  

Total 
impurity, 
m o l e ~  

Exp. 
impurity, 

mole~,  

Relative 
error, 

% 

Benzene 
Benzene-  thiophene 
Benzene -  n-heptane 

279.16 
279.16 
279.16 

278.87 
278.67 
278.44 

0.00 
0.34 
0.77 

0.461 
0.80 
1 . 2 3  

0.46 
0.78 
1.15 

2.6 
6.9 

i Experimentally determined 

Because the benzene had been carefully purified the high impurity content of  
the initial sample has to be noticed. This is probably due to the fact that more 
reliable assumptions have been made while developing Eq. (20). Another reason 
arises f rom the fact that  the whole experimental T, F curve has been used for 
purity determination and the lack of thermal equilibrium has not been considered 
in the present paper. Driscoll et al., who examined the methods for purity measure- 
ment by DSC, found that the calculated impurity varies considerably with the F 
limits used [19], 

ge 

[ I The author is grateful to Professors P. D. Garn and A. Bylicki as well as K. Zieborak 
for their constructive criticism and many valuable suggestions. 

T 
T o 

mi 
xj 

Symbols 

- equilibrium temperature of  the liquid with its solid, K 
- melting temperature of  the solvent, K 
- solute content in the solution, mole fraction 
- solute contents in the liquid and solid phase, respectively, 

m o l e  fraction 
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xi L, x s 

F 
#It.L, #~t.S 

S 
a~, a i 

A , B  
~ o  

R 
k 
a 

P 
z, Zo 

- solvent  contents  in the l iquid and solid phase,  respectively,  
mole  f rac t ion  

- f rac t ion  mel ted  
- par t i a l  m o l a r  s t andard  chemical  po ten t ia l s  o f  the solvent  in  

the l iquid and  solid phase,  respectively,  cal. m o l e -  ~ 
- activit ies o f  the solvent  in the l iquid  and  solid phase,  respec- 

t ively 
- cons tan ts  o f  Eqs (4) and  (5), respectively, cal" mole  - 1  
- mola r  en tha lpy  o f  mel t ing o f  the solvent,  ca l .  mole  -~  
- gas constant ,  c a l .  d e g - ~ ,  m o l e -  ~ 
- pa r t i t i on  coefficient, d imensionless  
- p a r a m e t e r  o f  Eq. (11), dimensionless  
- mass of  solute in the l iquid  phase,  mole  

- mass  of  l iquid  at  the  given m o m e n t  a n d  at  the ini t ia l  m o m e n t  
o f  crystal l izat ion,  respectively,  mole  
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R~SUMt~ -- On 6tablit une nouvelle 6quation pour la courbe cryoscopique. Cette Equation 
relie la temp6rature d'6quilibre Tde la solution et la fraction molaire F, fondue, h la temp6ra- 
ture T: 

T = T ~ - -  R ( T ~  
mi F/xj + 2a(1 -- F) 

Cette relation tient compte de l'6cart des solutions ~t l'6tat ideal et de la solubilit6 de leurs 
constituants dans la phase solide. 

Les donn6es obtenues montrent qu'on peut compter sur une exactitude de 10,%o par rap- 
port h la valeur r6elle de l'impuret6, dans le domaine de puret6 allant de 98 it 99.9 ~ .  
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ZUSAMMENFASSUNG - -  Es wurde eine neue Gleichung ffir die kryoskopische Kurve abgeleitet. 
Diese Gleichung beschreibt die Beziehung zwischen der Gleichgewichts temperatur der 
L6sung T urld der Molfraktion der Probe F, geschmolzen bei T: 

0 2 0 
g ( T m  i ) / d H m  i 

T =  7~ F/xi + 2a(1 -- F ) '  

Die Gleichung berticksichtigt die Abweichur, g der LSsui~gen vom Idealzustand und die L6s- 
lichkeit ihrer Komponenten in der festen Phase. 

Die erhaltenen Datenweisen darauf hin, dass mit einer Genauigkeit innerhalb 10% des 
vorliegenden Verunreinigurgswertes im Reinheitsbereich yon 98 bis 99.9 % zu reehnen ist. 

Pe3 ioMe - -  •bIJ10 BblEe/leHO HOBOe ypaBHeH!4e KpItOCKOIIHtteCKO~ KpI, IBO~, KOTOpOe CBa3BIBAOT 
paBl-IOBeCHyrO TeMr~epaTypy pacTBOpa ,  T,  ~I MOYIbHyIO ,~,O,11tO o6pa3LIa ,  F ,  ii.iiaBalJ.ieFocfl i1pl/i T :  

R(Tm ~ )~/A/~m ~ 
T =  T ~ -- 

F/xj + 2a(1 --  F) 

Flpe~cTaB.rleHHOe ypaBHeHHe yqlATt,IBaeT BYlI;LqHIqe OTKYlOHeH/eLffI pac lBOpOB oT H~eaJIbHblX M 

paCTBO!0HMOCTL HX KOMIIOHeHTOB B TBep~Oi~ ~a3e .  ]~oYiyqeHHble ~aHHl:,Ie IIOF,.a3BIBalOT, tlTO 

TOX-IHOCTb B I lpe j Ie~ax  109/oo ~eI~CTBHTe.rlbHOFO 3HaqeHH~ nprlMeClei MOX<HO Ilpe~IBH~eTb ~.ri~t O6- 

.aacrrI ~I, ICTOTI~I Or 98 ~o 99,9~. 
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